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Abstract

This paper presents a further development of the Boundary Node Method "BNM# for 1!D linear elasticity[
In this work\ the Boundary Integral Equations "BIE# for linear elasticity have been coupled with Moving
Least Square "MLS# interpolants^ this procedure exploits the mesh!less attributes of the MLS and the
dimensionality advantages of the BIE[ As a result\ the BNM requires only a nodal data structure on the
bounding surface of a body[ A cell structure is employed only on the boundary in order to carry out
numerical integration[ In addition\ the MLS interpolants have been suitably truncated at corners in order
to avoid some of the oscillations observed while solving potential problems by the BNM "Mukherjee and
Mukherjee\ 0886a#[ Numerical results presented in this paper\ including those for the solution of the Lame�
and Kirsch problems\ show good agreement with analytical solutions[ Þ 0887 Elsevier Science Ltd[ All
rights reserved[

0[ Introduction

Mesh generation\ for traditional Finite Element Method "FEM# analysis of 2!D bodies of
complex irregular shape\ can prove to be arduous\ time consuming and expensive[ This is especially
true for problems such as shape optimization\ modeling of certain manufacturing processes or
fracture mechanics with growing cracks\ in which remeshing must be carried out several times
during an analysis[ Hence\ there is considerable recent interest in mesh!less methods "see\ for
example\ the review article by Belytschko et al[\ 0885\ as well as other articles\ in this special issue
of the journal Computer Methods in Applied Mechanics and En`ineerin`\ devoted to this subject#[
An ideal situation\ perhaps\ is a method of analysis that can directly use a solid model for a 2!D
object with little or no meshing[ The Boundary Node Method "BNM# o}ers such a possibility[

� Corresponding author[
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An important step towards mesh!less methods is the Di}use Element Method "DEM# proposed
by Nayroles et al[ "0881#[ These authors have proposed the coupling of a nodal interpolation
scheme\ called Moving Least Squares "MLS# interpolants\ with Galerkin procedures[ In the MLS
interpolation scheme\ interpolants are _t to nodal values by a least!squares approximation scheme[
It is important to mention here that MLS interpolants had been proposed earlier for curve and
surface _tting "see\ for example Lancaster and Salkauskas\ 0889#[ The DEM only needs a dis!
tribution of nodes "points# inside and on a body\ and a boundary description\ in order to develop
the Galerkin equations[

Belytschko and his co!workers have re_ned and modi_ed the DEM and have called it the
Element!Free Galerkin "EFG# method[ One of their key contributions has been the introduction
of an underlying cell structure for numerical integration[ The EFG essentially divorces nodes from
elements in the sense that the unknowns\ in a discretized problem\ are only de_ned at nodes
"points# inside a body\ while conventional elements are replaced by cells that are not directly
related to the nodal unknowns\ but are only necessary for numerical integration[ These cells can
be very simple and need not satisfy the usual compatibility requirements of conventional _nite
elements[ They can be easily generated inside a computer code and can be easily re_ned in a local
region without modifying them in the rest of the body[ Belytschko and his co!workers have
advanced the EFG method with great energy and have applied it to a variety of 1!D problems
such as potential theory and linear elasticity "Belytschko et al[\ 0883a#\ fracture mechanics with
crack growth "Belytschko et al[\ 0883b\ 0884a#\ dynamic fracture "Belytschko et al[\ 0884b\ Belyts!
chko and Tabbara\ 0885#\ plate bending "Krysl and Belytschko\ 0884# and shell theory "Krysl
and Belytschko\ 0885#[ Preliminary 2!D results for an elastodynamics problem are presented in
Belytschko et al[ "0885#[

The Boundary Element Method "BEM\ see example\ Mukherjee\ 0871^ Banerjee\ 0883# has a
well known dimensionality advantage for linear problems in the sense that\ although meshing is
required in the conventional manner\ only the 1!D bounding surface of a 2!D body needs to be
discretized in a numerical solution procedure[ The idea of combining the MLS interpolation
scheme with Boundary Integral Equations "BIE# is intriguing since such an approach would retain
the mesh!less attribute of the former and the dimensionality advantage of the latter[ Such a method
could then directly employ a solid model of a 2!D body with nodes and cells only on the surface
of the body*the so called {{salted potato|| data structure as shown in Fig[ 0a "Mukherjee and
Mukherjee\ 0886a#[ This _gure shows boundary nodes\ denoted by points\ as well as cells[ The
cells\ used for integration\ must cover the surface of the body as in the standard BEM[ The cell
structure\ however\ is much more ~exible than the element structure in the BEM in the sense that
one or more of a group of cells can be subdivided without a}ecting the rest of the cells[ Also\ the
number of nodes in each cell is arbitrary\ although it appears "see Mukherjee and Mukherjee\
0886b# it is a good idea to use a small number of nodes per cell[ This combination of MLS
interpolants with the BIE has been recently carried out[ The resulting method is called the Boundary
Node Method "BNM#[ Results for 1!D problems in potential theory are presented in Mukherjee
and Mukherjee "0886a# and are most encouraging[

A di.culty associated with the use of MLS interpolants is the accurate satisfaction of boundary
conditions since these interpolants lack the usual delta function property of conventional shape
functions[ Belytschko and his co!workers have employed various approaches in order to accurately
enforce essential boundary conditions in the EFG method[ These ideas include Lagrange multipliers
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Fig[ 0a[ Input data structure for the BNM*the salted potato[

Fig[ 0b[ Domain of dependence of an evaluation point E[

"Belytschko et al[\ 0883a#\ use of tractions as Lagrange multipliers "Lu et al[\ 0883#\ collocation
"Belytschko and Tabbara\ 0885# and coupling of the EFG with _nite elements "Krongauz and
Belytschko\ 0885#[ A simple and very promising idea\ involving a re!de_nition of the usual discrete
norm "used in MLS interpolation# in terms of approximations to the nodal variables\ together
with post!processing of these approximations\ has led to very accurate numerical results in 1!D
potential theory "Mukherjee and Mukherjee\ 0886b#[ Another recently proposed remedy\ using
singular weight functions\ is due to Kaljevic and Saigal "0886#[

Use of MLS interpolants can lead to di.culties in accurate enforcement of both essential and
natural boundary conditions in the BNM[ This di.culty has been overcome in Mukherjee and
Mukherjee "0886a# by coupling the linear system of equations from the discretized BIE\ in terms
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of approximations to the nodal variables\ together with the discretized forms of the equations that
relate these approximations to their actual values "through MLS shape functions#[ An analogous
strategy is employed in the work reported in the present paper[

Another di.culty with the BNM is associated with interpolation of tractions across corners[
While displacements in elasticity problems are continuous on the boundary of a body\ tractions
are typically discontinuous across corners[ The shape functions for MLS interpolants\ however\
are smooth within the domain of dependence of an evaluation point[ In Mukherjee and Mukherjee
"0886a#\ domains of dependence were allowed to extend across corners[ This approach of approxi!
mating discontinuous variables with continuous basis functions led to oscillations in some of the
numerical results presented in that paper[ In the present work\ two strategies\ namely domains of
dependence that reach across corners\ and those that are truncated at corners\ are compared in
the case of linear elasticity[ Although some artifacts "kinks# sometimes remain\ the numerical
solutions from the latter strategy seem to outperform those from the former[ Please see Belytschko
et al[ "0885# for a discussion of modeling of discontinuities in the EFG method[

The primary contribution of the present paper is the coupling of MLS interpolants with the 1!
D BIE for linear elasticity[ Another important contribution is the implementation of truncated
domains of dependence mentioned above[

This paper is organized as follows[ MLS interpolants and weight functions are presented _rst[
This is followed by a brief description of the well known BIE for linear elasticity\ _rst derived by
Rizzo "0856#[ The next section is concerned with imposition of boundary conditions in the elasticity
BNM\ followed by a discussion of interpolation of discontinuities in tractions across corners[
Finally\ numerical results for several illustrative 1!D problems\ including the classical problems
_rst solved by Lame� and Kirsch\ are presented[ The computed solutions are in good agreement
with the analytical ones[

1[ MLS Interpolation scheme for the 1!D BNM

In contrast to the Element Free Galerkin Method\ the Moving Least Square interpolants in the
BNM are de_ned on the 0!D bounding surface 1B of a 1!D body B[ As in the usual BEM
formulation\ the MLS interpolants for each component of displacement and traction can be
constructed independently[ The MLS interpolants for the displacements u"0#\ u"1# and tractions t"0#\
t"1# are de_ned as

u"i# "s# � pT"s#a"i# "s# "0#

t"i# "s# � pT"s#b"i# "s# "1#

where s is a curvilinear coordinate on 1B\ p0 � 0 and pj"s# " j � 1\ 2\ [ [ [ \ m# are monomials in s[
The monomials pj"s# provide the intrinsic polynomial bases for u"i# and t"i#[ In the numerical
implementation presented later in this paper\ a quadratic background basis "m � 2# is used\ i[e[

pT"s# � ð0\ s\ s1Ł "2#

The coe.cients a"i#"s# and b"i#"s# are obtained by minimization of weighted L1 norms de_ned as]
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J "i#
0 � s

n

I�0

w"s−sI#ðpT"sI#a"i# "s#−u¼ "i#
I Ł1 "3#

J "i#
1 � s

n

I�0

w"s−sI#ðpT"sI#ðb"i# "s#−t¼ "i#
I Ł1 "4#

where sI are boundary nodes on 1B\ s is the coordinate of an evaluation point E on 1B and n is the
number of boundary nodes in the neighborhood of E for which the weight function does not
vanish at E[ As shown in Fig[ 0b\ the value of a function at an evaluation point E is determined
entirely from those nodes which are within its domain of dependence[ In this _gure\ the gray circles
denote the ranges of in~uence of the nodes 0\ 1 and 2\ while the union of these circles is the domain
of dependence of the evaluation point E[ Any part of a circle lying outside the body is ignored[
The construction of weight functions is discussed int he next section of this paper[ As de_ned in
Mukherjee and Mukherjee "0886a#\ u¼ "i#

I and t¼ "i#
I are approximations to the actual nodal values

u"i#"sI# and t"i#"sI#\ respectively[ The distinctions between "u"i#
I \ t"i#

I # and "u¼ "i#
I \ t¼ "i#

I # become necessary
because the MLS interpolants lack the delta function property "Mukherjee and Mukherjee\ 0886a\
b#[ The quantities u¼ "i#

I and t¼ "i#
I are eventually determined from the BIE and boundary conditions as

discussed later in Section 4 of this paper[
The least squares minimization are necessary in order to determine a"i# and b"i# which are now

functions of the position s[ "They are constants in the standard BIE[# Typically\ m\ the order of
the polynomial basis employed "here m � 2#\ is much less than the number of nodes n in the
domain of dependence of an evaluation point "here n × 5#[ This situation provides ~exibility to
both the EFG and the BNM[ Nayroles et al[ "0881# have shown that the method fails if n ³ m
since the matrix A ðde_ned in eqn "7#Ł becomes singular in this case[ As in Mukherjee and
Mukherjee "0886a#\ the evaluation point can be either a source point P "a boundary node on 1B#
or a _eld point Q "a regular Gauss or a log weighted Gauss point on 1B#[

Minimizing J "i#
I with respect to a"i#"s# and J "i#

1 with respect to b"i#"s# "i � 0\ 1# lead to]

a"i# "s# � A−0"s#B"s#u¼ "i# "5#

b"i# "s# � A−0"s#B"s#t¼ "i# "6#

where

A"s# � s
n

I�0

w"s−sI#p"sI#pT"sI# "7#

B"s# � ðw0"s#p"s0#\ w1"s#p"s1#\ [ [ [ \ wn"s#p"sn#Ł "8#

wI"s# � w"s−sI# "09#

u¼ "i# � ðu¼ "i#
0 \ u¼ "i#

1 \ [ [ [ \ u¼ "i#
n ŁT "00#

t¼ "i# � ðt¼ "i#
0 \ t¼ "i#

1 \ [ [ [ \ t¼ "i#
n ŁT "01#

Therefore the actual nodal values of displacement and traction components can be interpolated
in terms of their approximate nodal values by substituting "5# and "6# in "0# and "1#\ respectively[
The results are]



V[S[ Kothnur et al[ : International Journal of Solids and Structures 25 "0888# 0018Ð00360023

u"i# "s# � pT"s#A−0"s#B"s#u¼ "i# "02#

t"i# "s# � pT"s#A−0"s#B"s#t¼ "i# "03#

Equations "02# and "03# can be rewritten as

u"i# "s# � s
n

I�0

FI"s#u¼ "i#
I "04#

t"i# "s# � s
n

I�0

FI"s#t¼ "i#
I "05#

where FI are analogous to the usual shape functions[ Note that the same set of shape functions
are used to interpolate each component of displacement and traction as in the usual BEM[ In this
work\ s is the local relative coordinate of the boundary point with respect to the evaluation point[
Thus\ the origin of the local coordinate system is at the evaluation point[ Moving in an anti!
clockwise direction\ s is positive if the boundary point is ahead of the evaluation point and s is
negative if the boundary point is behind the evaluation point[ Therefore\ s for an evaluation point
is always zero and p0 � 0\ p1 � 9\ p2 � 9[ For further details of implementation of this procedure\
refer to Mukherjee and Mukherjee "0886a#[ A signi_cant fraction of the total CPU time is spent
in the computation of these shape functions[

2[ Weight functions

The choice of weight functions for the Element!Free Galerkin Method has been investigated by
several investigators "e[g[ Nayroles et al[\ 0881^ Belytschko et al[\ 0883a#[ As shown in Lancaster
and Salkauskas "0870#\ the shape function fI"s# and its derivatives are continuous upto the same
order as the weight function wI"s# and its derivatives[ The weight function chosen in this work is
an exponential function\ i[e[

wI"s# � 8
e−"dI:c#

1
−e−"d¼I:c#

1

0−e−"d¼I:c#
1

if dI ¾ d¼I^

9 if dI − d¼I

[ "06#

Here\ d¼I is the size of the support of the weight function wI and it determines the range of
in~uence RI of the boundary node sI[ The constant c controls the rate of decay of the weight
function[ In the numerical implementation presented later\ the parameters in the weight function
are chosen such that

"a# The number of nodes in the domain of dependence of an evaluation point is in the range 5Ð
01[

"b# The weight function at the farthest node is ¾ 9[90[
"c# The ratio "c:d¼i# is typically in the range "9[24Ð9[64# in order to obtain a {{reasonable|| decay in

the weight function[

Note that these parameters can vary over di}erent parts on the body depending on the local cell
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density[ However\ determining an {{optimal|| distribution\ that represents the most e.cient or
accurate way of constructing the weight functions for a given problem\ requires more study[

3[ Boundary integral equations for linear elasticity

The well known regularized BIE "Rizzo\ 0856 _rst presented the original form without reg!
ularization# for the solution of the governing equations of linear elasticity in a 1!D domain B
bounded by 1B\ is given by

g1B

"t"i#Uij"P\ Q#−Tij"P\ Q#ðu"i# "Q#−u"i# "P#Ł# dsQ � 9 "07#

Uij �
−0

7p"0−n#m $"2−3n#dij ln"r#−
yiyj

r1 % "08#

Tij �
−0

3p"0−n#r1 $"0−1n#"njyi−niyj#¦0"0−1n#dij¦
1yiyj

r1 1 yknk% "19#

where Uij and Tij are the usual kernels as in Mukherjee "0871#\ P and Q are the source and _eld
point\ respectively\ on 1B\ m is the shear modulus n is the Poisson|s ratio\ dij is the Kronecker delta\
yi � xi"Q#−xi"P# and "n0\ n1# are the components of the normal to the boundary at Q[ Substituting
eqns "04# and "05# in "07# yields

g1B 6Uij"P\ Q# s
nQ

I�0

FI"Q#t¼ "i#
I −Tij"P\ Q# 0 s

nQ

I�0

FI"Q#u¼ "i#
I − s

nP

I�0

FI"P#u¼ "i#
I 17 dsQ � 9 "10#

Here nQ and nP are the numbers of nodes in the domains of dependence of the evaluation points
Q and P\ respectively[ In order to numerically integrate the above BIE\ the boundary of the body
is discretized into a number of non!overlapping cells[ Nodes are placed in each cell and the MLS
interpolants can be de_ned in terms of the nodes alone[ The cell structure can be irregular and no
compatibility requirements need to be satis_ed across adjacent cells[ Thus the usual elemental data
structure in FEM or BEM is replaced by the irregular cell structure as shown in Fig[ 0a and nodes
can be generated anywhere within the domain[ However\ the real advantages of the cell structure
will become more apparent in 2!D[ Regular Gaussian integration and log!weighted Gaussian
integration is carried out as in Mukherjee and Mukherjee "0886a#[ Finally\ the discretized form of
eqn "10# can be written as

ðAŁ"u¼#¦ðBŁ"t¼# � "9# "11#

4[ Application of boundary conditions

Mukherjee and Mukherjee "0886a# have imposed boundary conditions in the BNM\ for potential
theory\ by coupling the discretized BIE in terms of approximations to the nodal variables\ together
with the discretized forms of the equations that relate these approximations to their actual nodal
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values through MLS shape functions[ For the elasticity problem at hand\ an analogous procedure
has been adopted in this paper[ The related issue of satisfaction of the boundary conditions in the
Element!Free Galerkin method has been discussed in several publications by Belytschko and his
co!authors as well as in Mukherjee and Mukherjee "0886b#[ For a discussion of oscillatory solutions
obtained from the BNM when u¼ and t¼ are not used as proposed\ please see Mukherjee and
Mukherjee "0886a#[

Let the discretized forms of equations "04# and "05# be

ðHŁ"u¼# � "u# "12a#

ðHŁ"t¼# � "t# "12b#

The above equations\ together with the discretized BIE "11#\ are rearranged by appropriate
switching of columns to the forms]

ðM0Ł"x¼#¦ðM1Ł"y¼# � "9# "12c#

ðH0Ł"y¼# � "y¹# "12d#

"x# � ðH1Ł"x¼# "12e#

where the vector "y¹# contains the prescribed boundary conditions and "x# contains the rest[ Also\
"y¼# and "x¼# contain their corresponding approximations[

If N is the total number of nodes on the boundary 1B\ the BIE "12c# is a set of "dense# coupled
1N equations in 3N unknowns[ Equation "12d# is another set of "sparse# 1N equations[ One solves
eqns "12c# and "12d# for the 3N unknowns "x¼# and "y¼# together[ The overall sti}ness matrix\
therefore consists of 1N dense equations from the BIE and 1N sparse equations from the imposed
boundary conditions[

5[ Postprocessing the solution

Finally equation "12e# is used to obtain the nodal unknowns from their approximations[ The
last step is crucial for the success of this scheme[ The approximations "x¼# are usually not accurate
and often display substantial oscillations[ These are damped out by postprocessing the nodal
approximations with eqn "12e#[

6[ Handling of corners with jump discontinuities

The shape functions from MLS interpolants\ and their derivatives along the boundary\ are very
smooth\ and this could prove to be a drawback when the domain of dependence of an evaluation
point extends across a corner[ In potential problems\ the normal derivative of the primary unknown
variable su}ers a jump as one crosses a corner\ and it is di.cult to interpolate it using MLS
interpolants[ Mukherjee and Mukherjee "0886a# observed oscillations in solutions of potential
problems from the BNM when the domains of dependence were allowed to extend across corners[
In linear elasticity\ the tractions are typically discontinuous across a corner even though the
displacements are continuous[ If the usual scheme "without truncations# is used\ oscillations are
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observed both in the displacement and traction pro_les even away from the corners[ In order to
avoid these oscillations\ the domain of dependence of an evaluation point has been truncated in
this work whenever it crosses a node where the normal to the boundary is discontinuous[ The use
of a one!sided MLS interpolant near corners substantially reduces the oscillations and this issue is
discussed further in the following sections[

7[ Implementation and numerical examples

The major aspects of coding for linear elasticity problems using the Boundary Node Method
involve]

"a# Discretization of the geometry "boundary# into cells[
"b# Generation of node"s# in each cell[
"c# Generation of regular Gauss points and log!weighted Gauss points[
"d# Computing the domain of dependence for each evaluation point[
"e# Computation of shape functions at each node for all evaluation points[
"f# Numerical integration of the kernels in the BIE to generate the _rst set of 1N eqns "12c#[
"g# Using MLS interpolants and the essential boundary conditions to generate the second set of

1N equations[
"h# Solution of set of equations and post processing[

Four sets of examples are illustrated in this section[ All of them use the same material data as
follows] Young|s modulus E � 1[4 "in consistent units# and Poisson|s ratio n � 9[2[

7[0[ Patch test

In a typical patch test\ a known linear displacement pro_le is prescribed on the boundary of the
body and the displacements at interior points are computed[ If the set of shape functions are
consistent\ the interior displacement pro_le will be given by the same analytical function as the
one used to prescribe the boundary displacements[ The patch test has been carried out on square
and circular geometries and the e}ect of corners on the BNM solution scheme is studied[

For the BNM patch test\ displacements are prescribed on the boundary 1B[ BNM solutions for
boundary tractions are studied on a square plate and internal solutions for displacements are
examined[ The displacement boundary conditions prescribed are]

u"0# � 1x¦2y "13a#

u"1# � 2x¦1y "13b#

Ten cells\ uniformly spaced\ are used to discretize each segment of the square plate and two nodes
are placed in each cell[ In case the domain of dependence of an evaluation point is not truncated
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Fig[ 1a[ Traction distribution around the square boundary for the patch test "without truncation of domain of
dependence#[

at a corner\ the output traction pro_le exhibits oscillations as shown in Fig[ 1a[ In case the domain
of dependence is truncated at a corner\ the oscillations disappear "except for sharp kinks in the
cells adjacent to each corner# and the analytical solution is reproduced elsewhere ðFigs 1b and cŁ[
Since the patch test has to be exactly satis_ed in order to guarantee convergence\ this modi_cation
is very important[ Table 0 lists the internal points and compares the computed solution with the
analytical solution[ For circular plates\ the normal is continuous on the boundary and the usual
MLS interpolants "without truncation# yield a smooth and accurate solution on the boundary and
the BNM passes the patch test successfully[ The BNM with truncated domains of dependence is
used in the rest of the numerical examples in this paper[

7[1[ Displacement _eld problems

The problem considered here is the same as described by Nagaranjan et al[ "0883# and Phan et
al[ "0886# where it was solved using the Boundary Contour Method "BCM#[ Consider a circular
sheet of unit radius centered at the point "1\ 1# in the global "x\ y# coordinate system[ A planar
displacement pro_le is described on the boundary as follows]

u"0# �
x

x1¦y1
"14a#

u"1# �
y

x1¦y1
"14b#
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Fig[ 1b[ Traction distribution around the square boundary for the patch test "with truncation of domain of dependence#[

Fig[ 1c[ Traction distribution around the square boundary for the patch test "with truncation of domain of dependence#[
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Table 0
Relative errors at various locations for the patch test on a square plate[
Number of cells "uniformly placed on a unit square# � 39[ d¼I � 9[14\
c � 9[09

Location Error in ðu"0#Ł) Error in ðu"1#Ł)

9[14\ 9[14 9[225 9[225
9[14\ 9[49 9[079 9[940
9[14\ 9[64 9[005 −9[903
9[49\ 9[14 9[940 9[079
9[49\ 9[49 9[999 9[999
9[49\ 9[64 −9[985 −9[900
9[64\ 9[14 −9[903 −9[901
9[64\ 9[49 −9[901 −9[916
9[64\ 9[64 −9[900 −9[900

The output traction pro_les along the boundary are shown in Figs 2a and b[ Thirty uniform
cells are used on the boundary to discretize the geometry and each cell contains two nodes[ The
numerical results show very good agreement with the analytical solution as shown in Figs 2a and
b[

Fig[ 2a[ Traction distribution around the circle for the planar displacement _eld[
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Fig[ 2b[ Traction distribution around the circle for the planar displacement _eld[

A cubic displacement pro_le is next prescribed on the boundary as follows]

u"0# � y2−2yx1 "15a#

u"1# � −x2¦2xy1 "15b#

The numerical results for the cubic displacement also show very good agreement with the
analytical solution as shown in Figs 2c and d[

7[2[ Lame� problem

The third example involves the well known Lame� problem in which a hollow cylinder is subjected
to uniform pressure on the inner surface[ Let a and b denote the inner and outer radii of the
cylinder\ and pi the uniform internal pressure[ The stress components sr "in the radial direction#
and su "in the circumferential direction# are given by Timoshenko and Goodier "0869#

sr �
a1pi

b1−a1 00−
b1

r11 "16a#

su �
a1pi

b1−a1 00¦
b1

r11 "16b#
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Fig[ 2c[ Traction distribution around the circle for the cubic displacement _eld[

Fig[ 2d[ Traction distribution around the circle for the cubic displacement _eld[
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Due to the symmetry of the problem\ only a quarter of the structure is modeled as shown in
Fig[ 3a[ Twenty uniformly placed cells are used in each boundary segment and the traction ty

along the edge AB is shown in Fig[ 3b[ The numerical results are in excellent agreement with the
analytical solution except for a small region around the corner where some small oscillations are
observed[

7[3[ Kirsch problem

The model for the classical Kirsch problem is shown in Fig[ 4a[ A total of 079 cells are used to
discretize the geometry "with 39 uniform cells on AB\ CD\ DE and AE and 19 uniform cells along
BC#[ In polar coordinates\ the stress component sr in the radial direction\ the stress component su

in the circumferential direction and the shearing stress component sru at a point "r\ u#\ in an in_nite
plate with a circular hole\ with an applied uniaxial load S\ are given by Timoshenko and Goodier
"0869#

sr �
S
1 00−

a1

r11¦
S
1 00¦

2a3

r3
−

3a1

r1 1 cos"1u# "17a#

su �
S
1 00¦

a1

r11−
S
1 00¦

2a3

r3 1 cos"1u# "17b#

Fig[ 3a[ Model for the Lame� problem] uniform unit pressure distribution is prescribed along the arc BC[
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Fig[ 3b[ Traction distribution along the edge AB for the Lame� problem[

Fig[ 4a[ Model for the Kirsch problem] uniaxial load of magnitude S � 0 applied along edge AE[
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Fig[ 4b[ Traction distribution along edge CD for the Kirsch problem[

Fig[ 4c[ Traction distribution along edge AB for the Kirsch problem[
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sru � −
S
1 00−

2a3

r3
¦

1a1

r1 1 sin"1u# "17c#

Along the edge CD "u � p:1#\ the traction in the x direction is given by

tx �
−S
1 01¦

a1

r1
¦

2a3

r3 1 "18#

Along the edge AB "u � 9#\ the traction in the y direction is given by

ty �
S
1 0

a1

r1
−

2a3

r3 1 "29#

The Kirsch problem is more demanding than the Lame� problem due to the existence of a stress
concentration at the corner C[ The output traction pro_les are shown in Figs 4b and c[ It can be
seen that the computed tractions are in good agreement with the analytical solution[ Please note
that in this current BNM model\ there are no nodes exactly at the corners[ The accuracy of these
results depend on the discretization scheme and also on the parameters used to construct the
weight functions\ and further work is required in this area[

8[ Discussion and conclusions

The initial numerical results obtained from the boundary node method for potential problems
"Mukherjee and Mukherjee\ 0886a#\ and for linear elasticity\ are encouraging[ The BIE have been
successfully coupled with MLS interpolants and accurate numerical results have been obtained[ In
the work presented in this paper\ the domain of dependence of an evaluation point has been
modi_ed by truncating it at corners[ This procedure leads to much smoother numerical results
than have been reported in Mukherjee and Mukherjee "0886a#[ This is a particularly useful feature
for 2!D problems in which extending shape functions across boundary edges and corners might
prove to be di.cult[ In addition\ it should be noted that the same set of truncated MLS interpolants
are used for interpolating both the displacement and traction components\ in spite of the fact that
while tractions are usually discontinuous across corners\ the displacements are always continuous[
In the numerical results presented here\ no signi_cant loss of accuracy has been observed due to
these features[ Treating the displacement and traction shape functions on an equal footing saves
computational e}ort as compared to a scheme which employs di}erent versions of shape functions
across corners[
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